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abstract

PURPOSE This study documents the creation of automated, longitudinal, and prospective data and analytics
platform for breast cancer at a regional cancer center. This platform combines principles of data warehousing
with natural language processing (NLP) to provide the integrated, timely, meaningful, high-quality, and ac-
tionable data required to establish a learning health system.

METHODS Data from six hospital information systems and one external data source were integrated on a nightly
basis by automated extract/transform/load jobs. Free-text clinical documentation was processed using a
commercial NLP engine.

RESULTS The platform contains 141 data elements of 7,019 patients with newly diagnosed breast cancer who
received care at our regional cancer center from January 1, 2014, to June 3, 2022. Daily updating of the
database takes an average of 56 minutes. Evaluation of the tuning of NLP jobs found overall high performance,
with an F1 of 1.0 for 19 variables, with a further 16 variables with an F1 of . 0.95.

CONCLUSION This study describes how data warehousing combined with NLP can be used to create a pro-
spective data and analytics platform to enable a learning health system. Although upfront time investment
required to create the platform was considerable, now that it has been developed, daily data processing is
completed automatically in less than an hour.
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BACKGROUND

In 2007, the Institutes of Medicine coined the term
Learning Health System to describe a framework for or-
ganizinghealth care institutions arounda virtuouscycle in
which clinical care and research continuously inform one
another, enabled by a modern informatics infrastructure
that operationalizes routinely collected health data for
researchandquality improvement.1Althoughmosthealth
care systems now use electronic health records (EHR),
many lack thenecessary dataandanalytics infrastructure
to use EHRdata in real time for continuous improvement,
innovation, and knowledge generation, especially at the
regional and national levels.2-6

For routinely collected data to be effective in enabling a
learning health system, they generally must be inte-
grated, timely, meaningful, high-quality, and actionable.5

These conditions can be difficult tomeet. For example, in
the context of regional cancer centers, a single patient’s
record may be split among all the different health care
organizations where they have received care. Regional
data repositories designed to address this challenge often
experience delays in receiving and cleaning data and

may bemissing important clinical,3 social determinant,4,7

or patient-reported outcome data.5 Indeed, important
information about a patient’s condition is often recorded
only in the form of free-text clinical documentation (such
as consult notes and radiology reports), which is his-
torically needed to be abstracted via manual review.3

Furthermore, clinical documentation standards often
vary, which can introduce data quality issues.8-10 Privacy
requirements or inadequate data governance frame-
works can also impede access to these data, limiting their
actionability.11,12

Despite the challenges, a number of efforts have
been undertaken to create the necessary data and
analytics infrastructure to enable a learning health
system in oncology.13-18 Many of these have used a
data warehousing or data lake approach, in which
data are automatically transferred on a regular
schedule from disparate sources to a centralized data
repository that is designed for analytics.19-26 When
properly designed, data warehouses and data lakes
can significantly improve the timeliness and action-
ability of data although they require significant in-
vestment in time and resources to create.
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Although data integration through warehouses and lakes can
make data more timely and actionable, they are not typically
equipped to facilitate the analysis of free-text documentation
where somuch clinically meaningful information resides. This
has spurred recent interest in natural language processing
(NLP), a branch of artificial intelligence, for the extraction of
structured data from clinical text. Although NLP rarely ach-
ieves perfect accuracy, research suggests that it can achieve
similar performance to manual chart abstraction.27-36 There is
increasing interest in blending NLP with traditional data
warehousing to create a comprehensive data set for research
and quality improvement although to date, relatively few in-
stitutions have developed these systems,37-39 and to the best
of our knowledge, none currently exists for breast cancer.

The Juravinski Cancer Center (JCC) is a regional cancer
center serving a catchment area of approximately 2.5 million
people and receiving referrals from 10 community hospitals.
Data integration challenges at this center were similar to those
faced by other regional cancer centers. Patient records were
distributed across six clinical information systems, and a
significant amount of information was stored exclusively as
free text in clinical notes and radiology reports. Medical
records of referred patients were often incomplete or trans-
ferred as text files with no structure. Although a regional viewer
was available for clinicians to see records in other hospitals’
EHRs, these records were view-only and not available in a
repository for research or quality improvement purposes.40 As
a result of these factors, making use of routinely collected
health data was a difficult and time-consuming task.

This article documents the establishment of data and an-
alytics platform for a breast cancer learning health system at
the JCC in Ontario, Canada. This platform automatically
extracts patient data—including social determinants and
patient reported outcomes—from disparate clinical infor-
mation systems on a nightly basis, uses NLP to extract
structured data from free-text documentation, and integrates
them into a single up-to-date, longitudinal, prospective data
model.

METHODS

Stakeholder Engagement

One of the primary barriers to the kinds of quality improve-
ment initiatives enabled through learning health systems can
be stakeholder resistance.41,42 To help address this barrier
from the outset, we set about engaging stakeholders around
the hospital to contribute to shaping the vision andmission of
the data and analytics platform. These stakeholders included
clinicians, managers, quality improvement teams, data an-
alysts, researchers, information technologists, privacy offi-
cers, and executive sponsors. This engagement extended to
helping determine which data elements would be included in
the platform since we reasoned that buy-in would be highest
if all stakeholder groups could make effective use of the
platform tomeet their own goals. Stakeholders were invited to
provide input into a briefing note that outlined the vision and
mission for the platform, along with proposed methods,
privacy/security protections, and data elements. Key stake-
holders were asked to add their names to the briefing note
once their input had been included, and the note was then
reviewed and approved by the hospital’s data and analytics
governance committee.

Data Sources

Once a list of data elements had been identified by our
stakeholders, we set about identifying where these data
resided in our hospital’s informatics environment. With help
from our information technology and decision support
departments, we identified that data of interest originated in
six distinct clinical information systems.

MEDITECH. The hospital’s primary EHR and stored clinical
documentation and data on patient demographics and
encounters.

Hamilton regional laboratory medicine program. Regional
laboratory information system that stored pathology reports.

PowerScribe. Regional radiology reporting platform that
stored medical imaging reports.

CONTEXT

Key Objective
How can oncology centers leverage their clinical information systems to unlock the integrated, timely, meaningful, high-quality,

and actionable data required to establish a learning health system?
Knowledge Generated
A combination of data warehousing and natural language processing was used to create a patient-level, prospective, lon-

gitudinal data and analytics platform at a regional cancer center. This data and analytics platform includes comprehensive
clinical data about 7,000+ patients with newly diagnosed breast cancer seen over the past eight years and can be used for
both research and quality improvement.

Relevance
This study describes an approach through which cancer centers can improve their ability to use routinely collected clinical

data to enable a learning health system in which clinical care and research continuously inform one another.
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MOSAIQ. Oncology clinical information system that stored
data on radiation planning.

Oncology patient information system. Province-wide clinical
information system that stored data on systemic therapy.43

Your symptoms matter. Province-wide electronic informa-
tion system that stored data on patient-reported outcome
measures via the Edmonton System Assessment System.44

We then mapped the data flows between these distinct
systems and identified that copies of the data of interest
from PowerScribe and the Hamilton Regional Laboratory
Medicine Program were stored in MEDITECH and copies of
data from the Oncology Patient Information System and
Your Symptoms Matter were stored in a MOSAIQ data mart.
We examined the copied data to verify that they were
complete and useable for our purposes.

In addition to these six systems, we also identified that
information on social determinants of health could be
acquired from the Ontario Marginalization Index,45 a Ca-
nadian deprivation-based index similar to the Multidi-
mensional Deprivation Index developed by the US Census
Bureau.46

Architecture and Data Flows

Architecture was developed in consultation with our hospi-
tal’s information technology department. The hospital was in
the process of developing a data warehouse for operational
and financial analytics, so we elected to use the same design
patterns for both systems to minimize operational overhead
and provide the option of merging the resources in the future.
We thus adopted Microsoft SQL server for primary data
storage, Microsoft Server Integration Services (SSIS) for de-
veloping and managing extract/transform/load jobs, T-SQL
for stored procedures, and estrogen receptor/Studio for data
modeling. The NLP software DARWEN was run on Docker. A
deidentified copy of the data was stored in a separate re-
search informatics environment using PostgreSQL. The flow
of data is illustrated in Figure 1, and a detailed description of
data handling is provided in the Data Supplement.

To maximize the timeliness of data while minimizing the
chance of performance degradation on clinical systems,
the extract/transform/load jobs were programmed to au-
tomatically run every night at 2:30 am. Our data engineer
used Microsoft SSIS’ change data capture features to ex-
tract only new or modified data each night.

Since data in the data and analytics platform could be used
for clinical and quality improvement purposes, it included
personal health information. In consultation with our privacy
office, we created a deidentified version of this database to
be used for research purposes. The intent of this approach
was to improve efficiency and reliability by creating a rigorous
deidentification procedure up-front, rather than requiring an
analyst to deidentify data on a project-by-project basis in the
future. To deidentify the database, we removed direct
identifiers (name, health card number, etc) and modified

quasi-identifiers (eg, data elements that contained specific
dates were modified to use days from diagnosis).

System performance for data extraction, transformation,
and loading was monitored and evaluated using system
logs recorded by Microsoft SSIS.

NLP

We used NLP for data extraction in two scenarios: first,
when no structured data were available for a particular data
element (eg, comorbidities) for any of our patients; second,
when structured data were available for some patients, but
not all. The second scenario occurred because some pa-
tients received all their care at our regional cancer center,
whereas others were referred only after being diagnosed or
having received some treatment at a referring hospital. For
patients who received all their care at our cancer center, we
had structured data on estrogen receptor status, proges-
terone receptor status, and human epidermal growth factor
receptor 2 (HER2) status from synoptic reports. However,
for patients referred after their diagnosis, we used NLP to
extract these data from free-text clinical documentation. In
these cases, we elected to use structured data from syn-
optic reports when they were available and to fill in the gaps
with NLP when they were not.

We used DARWEN, a commercially available medical NLP
engine, to extract structured data from unstructured clinical
documentation. DARWEN uses a proprietary combination
of linguistic rules–based algorithms and deep learning
models to perform data extraction. Its operations and
performance have been described previously.27,28

For data elements where structured data were not available
for any patients, ground truth for model development and
evaluation was established through manual chart review.
Chart abstraction rules were drafted by a clinical expert and
refined in collaboration with the JCC’s Breast Cancer Disease
Site Group, which included medical, radiation, and surgical
oncologists. Manual extraction of 200 randomly selected
charts was performed by two trained chart reviewers. 100
abstracted charts were used for model training, with 50
reserved for validation and 50 held back for final testing. In
addition to this approach, we were able to conduct a further
test for estrogen receptor status, progesterone receptor
status, and HER2 status using structured data from JCC
pathologists’ synoptic reports as ground truth. This approach
allowed for a very large test set for performance estimation in
cases where NLP was used to fill in the gaps for patients
whose pathology workup was performed at a referring
hospital.

To ensure that the data produced by NLPwere well tuned to
our local data and thus of sufficiently high-quality to be
used in research studies, we evaluated its performance
by comparing it against manual chart abstraction for the
held-out test set (n = 50). F1 score, the harmonic mean of
sensitivity and positive predictive value, was used as the
primary evaluation metric. Secondary metrics included
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sensitivity (recall), specificity, positive predictive value
(precision), negative predictive value, and overall accuracy.
We also conducted a detailed manual error analysis for the
variables with the lowest performance.

Ongoing Quality Assurance

Performance decay of artificial intelligence systems be-
cause of data drift or concept drift is a growing concern in
health care.47,48 To control for potential performance decay
of our NLP models, we launched an ongoing quality as-
surance program, in which a random selection of charts is
reviewed semiannually by two oncologists. Results of the
chart review are compared against NLP output, and any
deviation from baseline NLP performance is flagged for
follow-up by our technical team. In addition, system logs
are reviewed regularly to identify any failures with extract/
transform/load operations. To ensure that this process can
be carried out efficiently, we have created a browser-based
chart abstraction tool that allows chart abstractors to si-
multaneously review clinical documentation while filling out
a standardized chart abstraction form in a single browser
window (the screenshot is included in the Data
Supplement).

RESULTS

This work culminated in an automated, longitudinal, pro-
spective data and analytics platform that provides access to
integrated, timely, meaningful, high-quality, and actionable
data for research, quality improvements, and other learning
health system activities. The platform contains 141 data
elements of 7,019 patients with newly diagnosed breast
cancer who received care at the JCC from January 1, 2014,
to June 3, 2022.

Data elements in the platform are organized into tables on
the basis of subject areas, which include both data ele-
ments originating from structured databases and those
extracted with NLP (Fig 2). A detailed data dictionary is

included in the Data Supplement. All data elements can be
joined at the patient level using PatientID as a key. Data in
the platform are longitudinal, which allows for the visuali-
zation and analysis of patients’ entire care journey as a
timeline (Fig 3). Data in the platform can be accessed
through dashboards built in the organization’s enterprise
business intelligence tool (Tableau) or using analysis tools
such as R, Python, and SAS.

System Performance

Daily updation of the database takes place every day at 2:
30 am to minimize impact on source systems and our
hospital network. Over the month of May 2022, the average
runtime of daily update jobs was 56 minutes. Extract/
transform/load jobs were consistent at approximately
40 minutes, with the primary source of variability coming
from daily NLP processing. This variability was driven by
clinic schedules, with daily patient volumes ranging from
80 to 300. The initial NLP run used to populate the da-
tabase with records from over 7,000 patients took 24 hours.
The extract/transform/load and NLP jobs were run on a
server with a four core Intel Gold 6248 @ 2.50 GHz CPU
and 16 GB of RAM.

NLP Performance

NLP performance is described in Table 1, and the distri-
bution of labels for variables extracted by NLP is reported in
the Data Supplement. An F1 of 1.0 was achieved for 19
variables, with a further 16 variables with an F1 of . 0.95.
These results are consistent with previous validation studies
of the DARWEN NLP engine.27,28

The lowest F1 was for detecting venous thromboembolism
(0.57), which in this case was related to a lower positive
predictive value (precision), a result not entirely unexpected
given the rarity of this complication (there were only two
cases in our test data set). Ourmanual error analysis of these

Data sources

MEDITECH

MOSAIQ

OPIS

PowerScribe

YSM

HRLMP

OnMarg index

Staging area NLP processing Data and analytics
platform

Structured
data

Free text

DARWEN NLP
engine

Learning health
system database 

(identified) 

Business
Intelligence
Dashboards

Query tools
(R, Python,

SAS)

Research
repository

(deidentified)

FIG 1. Data flow diagram. Nightly extract/transform/load jobs developed inMicrosoft SSIS transfer free-text clinical documentation and structured data from
source systems to a staging area. Free-text documentation is processed by an NLP engine, with structured data output loaded into a SQL database in the
staging area. A second stage of extract/transform/load operations transfers data to the learning health system data and analytics platform. NLP, natural
language processing; SSIS, Microsoft Server Integration Services.
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false-positive cases found that the NLP hadmissed negating
clauses (ie, no evidence of venous thromboembolism).

The other lower F1 scores were primarily related to detecting
comorbidities, specifically atrial fibrillation (0.80), chronic
obstructive pulmonary disorder (0.80), and stroke (0.86).
For all three of these conditions, this was driven by lower
sensitivity, indicating that the NLP missed some cases. On

manual error analysis, we noted that all the missed cases
occurred when patients had four or five comorbidities. In
these cases, the NLP successfully detected three or four of
the comorbidities, but missed a fourth or fifth.

In addition, we completed the first cycle of semiannual
quality assurance before publication. This activity identified
an anomaly in our radiation planning data. Before launch,
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FIG 2. Data and analytics platform conceptual schema. This figure illustrates the data elements available for each subject area in the platform. All data
elements can be joined at the patient level. Tables where data elements originated from structured data are given in teal. Tables with data elements entirely
extracted using NLP from free-text clinical documentation are given in red. Tables that used a hybrid of NLP and structured data extraction are given in
blue. (This figure is provided as a vector graphic so that it is legible when zoom in on.) NLP, natural language processing.
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we conducted extensive tests on our extract/transform/load
jobs to ensure that they were stable and performed source
to target verification to ensure that data in the platform were
an accurate representation of data in the source systems.
However, during routine quality monitoring, we noted that
some older radiation data were changing in ways that did
not make clinical sense. On investigation, we discovered
that although our platform’s extract/transform/load jobs
were operating correctly, data in the source system table we
were pulling from were unstable because of an error in their
code. We were able to resolve the issue by working with our
IT team to identify alternate tables within the source system
that were unaffected by the error.

DISCUSSION

This case study illustrates how a data and analytics platform
can be created at a regional cancer center to enable the
kind of research and quality improvement activities that
exemplify a learning health system. Use of a data ware-
housing approach provided data that are integrated, timely,
and actionable, whereas incorporation of automated NLP
allowed for the extraction of high-quality, clinically mean-
ingful data that would have otherwise been accessible only

through time-consuming manual chart review. Although
our previous pilot study established that this was feasible in
breast cancer on a small sample and with a restricted set of
data elements, the current study documents how such a
system can be delivered at scale.3

This study highlights the importance of ongoing quality
assurance of artificial intelligence deployments in health
care. Although extensive testing before launch can catch
most defects, like concept drift and data drift, the instability
in the radiation planning data that our quality assurance
activities uncovered could only be detected through on-
going monitoring. Although ongoing quality assurance re-
quires resources, without this kind of monitoring, our
platform would have gone on faithfully reproducing erro-
neous data from a defective source system table.

This project was performed at a single center with its own
unique challenges with respect to clinical informatics and
regional data sharing. Thus, both extract/transform/load
operations and NLP models would require adaptation and
tuning to be deployed at another center. Similarly, like other
regional cancer centers, the JCC typically cares for patients
with more advanced disease than referring hospitals, so the
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FIG 3. Longitudinal view of a patient journey. This figure illustrates a portion of a single patient’s deidentified data longitudinally. The x-axis displays days
since diagnosis. As illustrated here, this patient received dose dense doxorubicin with paclitaxel (Cancer Care Ontario Code AC-PACL [DD]) along with
TRAS and ANAS. Their tumor was observed to have shrunk from 18 cubic centimeters to 4 over the 12 weeks of systemic therapy. Symptomology was
recorded using the ESAS, and most symptoms—with the exception of well-being—were worse earlier in the course of treatment. For readability, the
data illustrated in this figure only include a fraction of what is available for every patient. ANAS, anastrozole; ESAS, Edmonton System Assessment
System; TRAS, trastuzumab.
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TABLE 1. Evaluation of Natural Language Processing Compared With Manual Chart Review

Variable Possible Values F1 (95% CI)
Sensitivity/
Recall Specificity

Positive
Predictive Value/

Precision
Negative Predicative

Value
Overall
Accuracy

Imaging

CT abdomen/pelvis date dd/mm/yyyy 1.00 1.00 1.00 1.00 1.00 1.00

CT abdomen/pelvis result Metastasis, no metastasis, unknown 0.96 (0.88 to 0.96) 0.96 0.99 0.96 0.99 0.98

CT abdomen/pelvis lymph node Node absent, node present, unknown 0.96 (0.9 to 0.98) 0.96 0.99 0.96 0.99 0.98

U/S abdomen/pelvis date dd/mm/yyyy 1.00 1.00 1.00 1.00 1.00 1.00

U/S abdomen/pelvis result Metastasis, no metastasis, unknown 0.98 (0.94 to 1.0) 0.98 0.99 0.98 0.99 0.99

Bone scan date dd/mm/yyyy 1.00 1.00 1.00 1.00 1.00 1.00

Bone scan result Metastasis, no metastasis, unknown 0.98 (0.94 to 0.98) 0.98 0.99 0.98 0.99 0.99

CT chest date dd/mm/yyyy 1.00 1.00 1.00 1.00 1.00 1.00

CT chest result Metastasis, no metastasis, unknown 1.00 1.00 1.00 1.00 1.00 1.00

CT chest lymph node Node absent, node present, unknown 0.98 (0.94 to 0.98) 0.98 0.99 0.98 0.99 0.99

Chest X-ray date dd/mm/yyyy 1.00 1.00 1.00 1.00 1.00 1.00

Chest X-ray result Unknown, no metastasis, metastasis 1.00 1.00 1.00 1.00 1.00 1.00

Mammography date dd/mm/yyyy 1.00 1.00 1.00 1.00 1.00 1.00

Mammography results Clear, suspicious lesion, clear, unknown 0.98 (0.92 to 0.98) 0.98 0.99 0.98 0.99 0.99

MRI breast date dd/mm/yyyy 1.00 1.00 1.00 1.00 1.00 1.00

MRI breast max size Length × width × height 0.98 (0.94 to 0.98) 0.98 1.00 0.98 1.00 1.00

MRI breast lymph node Node absent, node present 0.98 (0.94 to 1.0) 0.98 0.99 0.98 0.99 0.99

U/S breast biopsy date dd/mm/yyyy 0.98 (0.92 to 0.98) 0.98 0.99 0.98 0.99 0.99

U/S breast biopsy result Length × width × height 1.00 1.00 1.00 1.00 1.00 1.00

U/S breast biopsy lymph node Node absent, node present 0.98 (0.94 to 1.0) 0.98 0.99 0.98 0.99 0.99

Surgery

Axillary node dissection date dd/mm/yyyy 0.98 (0.94 to 0.9) 0.98 0.99 0.98 0.99 0.99

Axillary node dissection nodes
removed

Integer 0.98 (0.94 to 1.0) 0.98 1.00 0.98 1.00 1.00

Axillary node dissection positive
nodes

Integer, unknown 0.98 (0.94 to 1.0) 0.98 0.99 0.98 0.99 0.99

Sentinel node biopsy date dd/mm/yyyy 1.00 1.00 1.00 1.00 1.00 1.00

Sentinel node biopsy nodes removed Integer, unknown 1.00 1.00 1.00 1.00 1.00 1.00

Sentinel node biopsy positive nodes Integer, unknown 0.98 (0.92 to 0.98) 0.98 0.99 0.98 0.99 0.99

Surgery date yyyy/mm 0.88 (0.78 to 0.95) 0.88 0.88 0.88 0.88 0.88

Surgery side Left, right 0.89 (0.82 to 0.95) 0.89 0.95 0.89 0.95 0.93

Surgery procedure Mastectomy, modified radical mastectomy,
breast-conserving surgery

0.89 (0.82 to 0.95) 0.89 0.96 0.89 0.96 0.95

(Continued on following page)
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TABLE 1. Evaluation of Natural Language Processing Compared With Manual Chart Review (Continued)

Variable Possible Values F1 (95% CI)
Sensitivity/
Recall Specificity

Positive
Predictive Value/

Precision
Negative Predicative

Value
Overall
Accuracy

Comorbidities

AF Yes/no 0.8 (0.5 to 1.0) 0.67 1.00 1.00 0.99 0.99

CAD Yes/no 0.89 (0.57 to 1.0) 0.80 1.00 1.00 0.98 0.99

COPD Yes/no 0.8 (0.5 to 1.0) 0.67 1.00 1.00 0.99 0.99

DM Yes/no 1.00 1.00 1.00 1.00 1.00 1.00

HTN Yes/no 1.00 1.00 1.00 1.00 1.00 1.00

Stroke Yes/no 0.86 (0.5 to 1.0) 0.75 1.00 1.00 0.99 0.99

Pathology

Diagnostic biopsy date dd/mm/yyyy 0.98 (0.92 to 0.98) 0.98 0.98 0.98 0.98 0.98

ER biomarker Negative, positive, unknown 1.00 1.00 1.00 1.00 1.00 1.00

PR biomarker Negative, positive, unknown 1.00 1.00 1.00 1.00 1.00 1.00

HER2 biomarker Negative, positive, unknown 0.88 (0.72 to 1.0) 0.88 0.96 0.88 0.96 0.94

Tumor side Bilateral, left, right, unknown 0.94 (0.86 to 1.0) 0.94 0.97 0.94 0.97 0.96

Tumor site Central, others, unknown 0.94 (0.86 to 1.0) 0.94 0.97 0.94 0.97 0.96

Tumor type Ductal, others, DCIS, mixed, lobular, LCIS,
unknown

1.00 1.00 1.00 1.00 1.00 1.00

Clinical examination nodes found No, yes, unknown 0.85 (0.74 to 0.94) 0.85 0.93 0.85 0.93 0.90

Clinical examination size of primary
tumor

cm3 0.88 (0.77 to 0.93) 0.88 0.99 0.88 0.99 0.98

Complications

Myocardial infarction Yes/no 1.00 1.00 1.00 1.00 1.00 1.00

Sepsis Yes/no 1.00 1.00 1.00 1.00 1.00 1.00

Stroke Yes/no NA NA 0.96 0.00 1.00 0.96

Venous thromboembolism Yes/no 0.57 (0.25 to 1.0) 1.00 0.94 0.40 1.00 0.95

Febrile neutropenia Yes/no NA NA NA NA NA NA

Hypercalcemia Yes/no NA NA NA NA NA NA

Metastasis

Metastasis date dd/mm/yyyy 0.87 (0.78 to 0.94) 0.87 0.87 0.87 0.87 0.87

Metastasis site Bone, brain, liver, lungs, unknown 0.96 (0.91 to 1.0) 0.96 0.99 0.96 0.99 0.99

Abbreviations: AF, atrial fibrillation; CAD, coronary artery disease; COPD, chronic obstructive pulmonary disorder; CT, computed tomography; DCIS, ductal carcinoma in situ; DM, diabetes; ER, estrogen
receptor; HER2, human epidermal growth factor receptor 2; HTN, hypertension; LCIS, lobular carcinoma in situ; MRI, magnetic resonance imaging; PR, progesterone receptor.
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cohort in our platform may not be representative of national
or global populations. Patients report outcome data on a
voluntary basis, with adoption at around 70% and with
some disruption associated with the COVID-19 pandemic.
Our hospital system did not collect individual-level socio-
economic data, so data on marginalization are based on
neighborhood-level estimates, although our ability to link to
the most granular census data (district areas) minimizes

the risk of ecological fallacy when using the index as an
individual-level proxy.49

We created an automated, longitudinal, prospective data
and analytics platform for breast cancer at a regional
cancer center. This platform combines principles of data
warehousing with NLP to provide the integrated, timely,
meaningful, high-quality, and actionable data required to
establish a learning health system.
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