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BACKGROUND
• Medical error is the 3rd leading cause of death in the United States and

in heart failure alone, up to 90% of patients are not receiving
foundational therapies according to guidelines1.

• Limitations in current Electronic Health Records (EHR) systems impair
clinicians’ ability to unlock value seamlessly and automatically from
millions of data points buried in clinical text.

• If medication data are structured, it is often incomplete or out of date.
More often they are buried in free-text clinical documentation which
can include historical and contemporaneous dictation with varying
levels of detail or even conflicts.

• Large language models (LLM) have shown impressive capabilities, with
Med-PaLM 2 recently demonstrating expert performance on USMLE-
type exam2, but concerns about their application in a clinical setting
remain, in part due to challenges resolving context across multiple
clinical documents and hallucinations.

• This research aims to develop an approach to extract accurate
medication data at scale and identify gaps in care.

METHODOLOGY
• Employed a two-step process using a LLM (model-L) to summarize and

a BERT-based sequence labeling model (model-B) to extract medication
information from clinic notes.

• Model-L utilized LoRA with prefix tuning to ensure that it focused on
relevant information, resolving conflicts and summarizing evidence
from source documents.

• Model-B was trained to extract information from the results obtained
from model-L. We leveraged existing manually labeled dermatology
data for training to produce sentence-level predictions for the drug as
well as its associated status and relations (e.g. dosage, frequency). The
final output of model-B is structured data with all brand names
normalized to the drug.

• The models were then deployed and assessed for accurate extraction of
medications and their doses from patient notes to identify patients not
receiving foundational therapies (Figure 1).

RESULTS
• ~300 outpatient dermatology patient records were included in the model-

L training dataset. These records were unstructured and included
multiple different note types (e.g., clinical notes, letters, and pathology
reports).

• Model-L provided a compact summary of the status of [Drug A] and
conclusion that patient is on [Drug A] resolving longer context conflicts.
(Table 1).

• The output of Model-L alone without model-B achieved an F1 0.77.
This was in part due to hallucinations. (Table 2).

• The model-B dataset consists of 4,433 clinical text samples, of which
3,310 were used for training and 1,123 for testing.

• Subsequent processing through model-B was able to then extract the
specific medication data including dose, for example: “[DRUG A],
40mg, OD.”

• The final output of the dual-model approach with model-L and model-B
is structured data. (Table 3).

• Preliminary comparison to manual review showed the output achieved
F1 ≥0.95.

CONCLUSIONS
• Extracting medication information across multiple unstructured notes is

challenging, in part, due to context conflicts and hallucinations.

• This study has demonstrated that it is possible to use a dual-model approach of
LLM and BERT-based models to enhance the robustness and accuracy of the
medication extraction process.

• This data will empower clinicians to review treatment patterns and ensure that
patients are getting the treatments they need to improve quality of care, equity,
and patient experience.

• Next steps include further validation and trialing this approach in a new pan-
Canadian study of heart failure patients to optimize care in the community and
demonstrate the impact that LLM can have for patients.
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Figure 1. Technical workflow for models.

Example of the final output after using model-B to extract 
information obtained from model-L .

Table 3.

Table 1.

Example of input texta Example Outputs of 
Model-L

Imp: Mild psoriasis and Crohn’s 
on [Drug A] with fair control, 
OA of knees…. 

Plan: Start with 20mg [Drug A], 
continue last week with 40 mg 
daily Will send back if need IA 
cortisone or physio…. Therapy: 
[Drug B] 50mg twice weekly-
switch to [Drug A] and stop 
50mg treatment…. 

Evidence: Start 
with 20 mg [DRUG 
A], continue last 
week with 40 mg 
daily. 

Conclusion: patient 
is currently on 
[DRUG A]. 

Impression: severe psoriasis, 
edema bilateral lower legs with 
some eroded areas

Plan: continue [Drug A] 90 mg q 
8 wks, start Unna’s boot for 
lower leg edema/ erosions

Evidence: currently 
on [Drug A] 90mg 
every 8 wks.

Conclusion: patient 
is currently on 
[Drug A].

Table 2.

Example of input texta Example Outputs of Model-L 
Hallucinations

F/U re: psoriasis -
currently taking [Drug A] 
and [DRUG B] 

Impression: 1.psoriasis 

Plan: 1.will switch to 
[DRUG C] Rx given: F/U 2 
mos enrollment form faxed 
into Spectrum

Evidence: Current usage 
of [Drug C].

Conclusion: patient is 
currently on [Drug C]. In 
the given text input, 
patient is on [DRUG 
A].Plan: F/U 2 mos. Imp: 
Psoriasis. Current 
therapy: [DRUG C].

[a] Some context may be hidden or replaced within the examples to protect patient protected health 
information.
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patient drug status dose

1 ustekinumab ON 45 mg q 12 wks

2 adalimumab ON 40 mg q 1 wk

3 adalimumab ON 40 mg q 2 wks

4 ustekinumab ON 90 mg q 8 wks

5 guselkumab ON 100 mg q 8 wks
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