

Using AI to Discover Baseline Predictors of Anti-VEGF Treatment Intervals in nAMD From Real World Canadian Ophthalmology Electronic Health Record Data

Chris Zajner*, Dr. Tom G. Sheidow*, Abdullah Aboukarr †, Desiree D'Souza †, Jessica Weiss ¶, Viktoriia Mokriak ¶, Steven Aviv ¶, Christopher Pettengell ¶, Joshua D. Silvertown †

Introduction

- Treat & Extend (T&E) is the preferred treatment protocol for anti-VEGF therapies, but ~ 1/3 of patients with nAMD still require dosing every 8 weeks or more frequently¹.
- The ability to predict which patients would most likely extend treatment intervals could substantially improve clinical outcomes and efficiency².
- Traditional studies have been unsuccessful in describing baseline demographics and clinical characteristics predictive of outcomes for patients on anti-VEGF treatment³.
- DARWEN[™] is an artificial intelligence (AI) engine, designed to quickly and economically extract real-world evidence trapped in large repositories of existing unstructured healthcare data and transform it into reports that can be easily interpreted by the clinician⁴.
- DARWEN[™] which has been previously described and validated in detail - combines multiple state of the art approaches to extract relevant data from structured and unstructured EHR fields⁴.
- DARWEN[™] uses a "twin-engine design" which allows model training to begin on one task, while learnings and adjustments can be made quickly and easily for adjacent tasks. This provides knowledge transfer between tasks, flexibility and adaptability, reducing the overall number of models required and hence the compound error, thus achieving high accuracy with results that are aligned with clinician expertise⁴.

Purpose

• This study is designed to validate a machine learning model to predict treatment outcomes for patients receiving continued anti-VEGF injections for nAMD.

Methods

- A total of 206,989 clinical documents from **41,849** patients (EyeDoc[®]) at Ivey Eye Institute in London, Ontario diagnosed with nAMD between Jan 1, 2009 and May 31, 2023 and treated with anti-VEGF therapy were analyzed through a retrospective chart review using the machine learning model DARWEN™. Ethics approval was obtained.
- DARWEN[™] utilizes a supervised Machine Learning Model (MLM).
- 1,122 patients were analyzed by DARWEN[™] and classified based on whether anti-VEGF treatment intervals could be extended to ≥8 week, based on demographics, disease characteristics, and documented OCT reports.
- Of 1122 patients, 44% received aflibercept, 54% received ranibizumab and 2% received other treatment. 58% were injection non-intensive (≥ 8 weeks between doses) vs. 32% injection-intensive (< 8 weeks between doses)
- 426 Patients with nAMD who were anti-VEGF naïve, and who started treatment after Eylea 2mg was publicly reimbursed in Ontario in July 2015 were clustered based on probability of having frequent injections. This timeframe was chosen to ensure standardization in the availability of treatment to patients for nAMD
- ~10% of patients were randomly excluded from model development to assess the accuracy of the final patient clusters.
- In line with standard Machine Learning protocols, DARWEN™ was trained on 389 patients and then tested on a sample of 37 patients not seen by the model.
- Statistical analysis of demographic variable differences was performed using Fisher's exact test and Kruskal wallis test for categorical and continuous variables respectively.

*Ivey Eye Institute, St Joseph's Hospital, 268 Grosvenor St., London, ON, N6A 4V2 ⁺ Bayer Inc, 2920 Matheson Blvd E, Mississauga, ON, L4W 5J4 ¶Pentavere Research Group Inc, 460 College Street, Toronto, ON, M6G 1A1

Results

Table 1. DARWEN™ Performance for Various Parameters of anti-VEGF Treatment

Results for 100 Patients	Precision	Recall	F1
Diagnosis of nAMD	0.92	1.00	0.96
nAMD extending intervals	1.00	0.92	0.96
nAMD frequent injections	0.92	1.00	0.96

- **Precision**: True positive divided by the test positive (true positive + false positive). Analogous to positive predictive value.
- F1: Combination of precision and recall in a single metric. Mean of precision and recall.
- A high F1 (~1) demonstrates high predictive validity of the model.

Figure 1. DARWEN™ Clustering of Patients into Discrete Groups Based on Baseline Characteristics

Cluster B (N = 146) Te Cluster A (N = 79) Strongly likely to be injection intensive injection intensive These patients have: These patients have: More comorbidities (heart disease, Less hypertension of stroke, COPD, and atrial fibrillation) BCVA between 20/

- Higher rates of IRF
- Lower BCVA (20/200 or worse)
- Higher CRT (≥402µm)

High

Table 2. Patient Baseline Characteristics

	A (N=79)	B (N=146)	C (N=164)	Total (N=389)	p value		A (N=79)	B (N=146)	C (N=164)	Total (N=389)	p value
					p raise	Best corrected visual					< 0.001
		Baseline Patien	it Demographics		0.010	acuity BCVA (20/X)					
Age					0.813	Mean (SD)	656.53 (793.41)	467.15 (703.97)	139.36 (334.52)	373.52 (638.46)	
Mean (SD)	81.94 (8.12)	82.16 (8.03)	82.59 (7.65)	82.30 (7.87)		Median (Range)	200.00 (30.00,	100.00 (20.00,	50.00 (20.00, 2000.00)	80.00 (20.00, 2000.00)	
Median (Range)	82.05 (57.28, 96.19)	82.62 (51.31, 97.60)	82.93 (60.51, 96.61)	82.75 (51.31, 97.60)			2000.00)	2000.00)			
Patient Sex					0.828	N-Miss	7	16	25	48	
Female	46 (58%)	90 (62%)	96 (59%)	232 (60%)		BCVA (20/X) divided					< 0.001
Male	33 (42%)	56 (38%)	68 (41%)	157 (40%)		based on tertiles					
		Baseline Ophthalmo	ology characteristics			20/60 or better	4 (6%)	15 (12%)	80 (58%)	99 (29%)	
Central retinal					< 0.001	20/60 - 20/200	19 (26%)	51 (39%)	38 (27%)	108 (32%)	
thickness (CRT) (µm)						20/200 or worse	49 (68%)	64 (49%)	21 (15%)	134 (39%)	
Mean (SD)	398.27 (113.53)	369.57 (115.75)	313.33 (80.08)	357.52 (108.88)		N-Miss	7	16	25	48	
Median (Range)	409.00 (205.00,	365.00 (187.00,	307.00 (100.00,	337.00 (100.00,		Hemorrhage					< 0.001
	677.00)	701.00)	632.00)	701.00)		absent	29 (37%)	78 (53%)	110 (67%)	217 (56%)	
N-Miss	24	79	95	198		present	50 (63%)	68 (47%)	54 (33%)	172 (44%)	
CRT (µm) divided					< 0.001	Intraretinal Fluid (IRF)					< 0.001
based on tertiles						absent	50 (63%)	121 (83%)	147 (90%)	318 (82%)	
<296.7	14 (25%)	22 (33%)	28 (41%)	64 (34%)		present	29 (37%)	25 (17%)	17 (10%)	71 (18%)	
296.7-402	10 (18%)	18 (27%)	34 (49%)	62 (32%)		Subretinal fluid (SRF)	27 (07.0)	20 (1730)		, , , (, c, o)	0.042
≥402	31 (56%)	27 (40%)	7 (10%)	65 (34%)		absent	64 (81%)	126 (86%)	123 (75%)	313 (80%)	0.012
N-Miss	24	79	95	198		present	15 (19%)	20 (14%)	41 (25%)	76 (20%)	
IdDie 4. P	alient med		y Characte		n walua	Table 5. P	atient Fan	nily Histor	<u>y Characte</u>	<i>TISTICS</i>	
	A(N=/9)	B(N=146)	12 (7%)	10tal (N=389)	p value		A (N=79)	B (N=146)	C (N=164)	Total (N=389)	p value
DIY AIVID	10 (20%)	14 (10%)	ΙΖ (7%)	42 (11%)	0.013	E					
Implant of Intraction with	53 (67%)	99 (68%)	124 (76%)	276 (71%)	0.211	Family history of	0 (0%)	0 (0%)	1 (1%)	1 (0%)	1.000
	33 (07 %)	99 (00%)	124 (70%)	270 (71%)	0.211	crossed eyes			× • • /		
Lens		Other Cor	norbidities	·		Family history of	2 (3%)	0 (0%)	0 (0%)	2 (1%)	0.041
Hypertension	26 (33%)	27 (18%)	37 (23%)	90 (23%)	0.053	diabetic retinopathy	- (- (/	- ()	- (
Heart Disease	14 (18%)	6 (4%)	0 (0%)	20 (5%)	< 0.001	Family history of	6 (8%)	12 (8%)	9 (5%)	27 (7%)	0.636
Stroke	13 (16%)	8 (5%)	4 (2%)	25 (6%)	< 0.001	glaucoma	- (- ((*)	
Diabetes	9 (11%)	25 (17%)	28 (17%)	62 (16%)	0.492	Family history of	14 (18%)	21 (14%)	25 (15%)	60 (15%)	0.813
Kidney disease	2 (3%)	1 (1%)	2 (1%)	5 (1%)	0.440	macular degeneration	((0.0.0
Hypothyroidism	8 (10%)	9 (6%)	12 (7%)	29 (7%)	0.556	Family history of	1 (1%)	1 (1%)	5 (3%)	7 (2%)	0.333
Hyperlipidemia/Hyperch	4 (5%)	4 (3%)	7 (4%)	15 (4%)	0.581	retinal detachment	1 (1.0)	1 (1.0)	0 (0.0)	7 (2:0)	0.000
olesterolemia			· (1.0)		0.001	Family history of	13 (16%)	25 (17%)	29 (18%)	67 (17%)	0 984
COPD	6 (8%)	1 (1%)	0 (0%)	/ (2%)	< 0.001	cancer	10 (10%)	20 (1770)	23 (10,0)	07 (1770)	0.904
Atrial fibrillation	<u> </u>	3 (2%)		10(3%)	0.009	Family history of	11 (14%)	16 (11%)	13 (8%)	40 (10%)	0.322
Cancer	7 (9%)	20 (18%) Eamily	33 (21%)	08 (17%)	0.047	diabetes	11 (1470)	10 (11/0)	10 (070)	40 (10/0)	0.022
Family history of	T	Family	history	TT		Family history of heart	13 (16%)	15 (10%)	12 (7%)	40 (10%)	0 000
amblyonia	0 (0%)	0 (0%)	0 (0%)	0 (0%)		disease	10 (10%)	10 (10%)	12 (770)	40 (10%)	0.077
Family history of	1/	·'		<u>+</u> +		Family history of high	18 (23%)	11 (8%)	1 (1%)	30 (8%)	< 0.001
blindness	0 (0%)	5 (3%)	9 (5%)	14 (4%)	0.077	blood pressure	10 (23%)	11 (0%)	1 (1%)	30 (0%)	< 0.001
Family history of	01 (070)	00 (100)	0 (50)		0.001	Family history of	15 (10%)	1 (3%)	1 (2%)	23 (6%)	< 0.001
cataracts	21 (2/%)	28 (19%)	8 (5%)	57 (15%)	< 0.001	stroke	13(19%)	4 (3 %)	4 (2 %)	23 (0%)	< 0.001

• **Recall:** True positive divided by the condition positive (true positive + false negative). Analogous to sensitivity.

of l'attents into Discrete Oroups Dased on Dasenne characteristics							
	Cluster B (N = 146) Tended to be non- injection intensive	Cluster C (N = 164) Strongly likely to be non- injection intensive					
	 These patients have: Less hypertension or SRF BCVA between 20/60 and 20/200 	 These patients have: Higher rates of SRF Lower CRT (<402um) Higher BCVA (20/60 or better 20/200) 					
Likeli	hood of remaining injection inter	Low					

Table 3 Patient Onhthalmic Characteristics

Results (Cont'd)

• Al clustering of patients into groups based on likelihood of requiring frequent injections was found to determine categorization based on Intraretinal fluid being present, Low BCVA (20/200 or worse), High CRT ($\geq 402 \mu m$), and having more comorbidities (such as heart disease, stroke, COPD, and atrial fibrillation).

Table 6. Proportion of Treatment Intervals in Each Cluster

Training dataset (n=389)

	A (N=79)	B (N=146)	C (N=164)	Total (N=389)	p value
Response to anti- VEGF therapy					< 0.001
Require frequent treatment intervals	34 (43%)	32 (22%)	16 (10%)	82 (21%)	
Extend treatment intervals	45 (57%)	114 (78%)	148 (90%)	307 (79%)	

Conclusions

- DARWEN[™] accuracy is consistent with other published studies on clinically verified MLMs.
- Patients with the following characteristics were most likely to be injection intensive more comorbidities (heart disease, stroke, COPD, and atrial fibrillation), IRF present, Low BCVA (20/200 or worse), High CRT ($\geq 402 \mu m$).
- DARWEN[™] was able to successfully categorize patients by disease and treatment response and predict which patients will be able to extend anti-VEGF injections.
- Al can be used to identify patients with nAMD from EHRs and identify baseline predictors of anti-VEGF treatment intervals to enable clinicians to optimize treatment for patients.

Limitations and Future work

- This study was conducted at a single site and results may not be consistent with the entire Canadian population
- Future work will aim to further refine the models and validate the results with additional sites.

This study was financially supported by Bayer Inc.

References

- . Daien V, Finger RP, Talks JS, Mitchell P, Wong TY, Sakamoto T, Eldem BM, Korobelnik JF. Evolution of treatment paradigms in neovascular age-related macular degeneration: a review of real-world evidence. Br J Ophthalmol. 2021 Nov;105(11):1475-1479. doi: 10.1136/bjophthalmol-2020-317434. Epub 2020 Oct 31. PMID: 33130553; PMCID: PMC8543219.
- 2. Patel P, Sheth V. New and Innovative Treatments for Neovascular Age-Related Macular Degeneration (nAMD). J Clin Med. 2021 May 30;10(11):2436. doi: 10.3390/jcm10112436. PMID: 34070899; PMCID: PMC8198303
- . Gallardo M, Munk MR, Kurmann T, De Zanet S, Mosinska A, Karagoz IK, Zinkernagel MS, Wolf S, Sznitman R. Machine Learning Can Predict Anti-VEGF Treatment Demand in a Treat-and-Extend Regimen for Patients with Neovascular AMD, DME, and RVO Associated Macular Edema. Ophthalmol Retina. 2021 Jul;5(7):604-624. doi: 10.1016/j.oret.2021.05.002. Epub 2021 May 8. PMID: 33971352. . Gauthier MP, Law JH, Le LW, Li JJN, Zahir S, Nirmalakumar S, Sung M, Pettengell C, Aviv S, Chu R, Sacher A, Liu G, Bradbury P, Shepherd FA, Leighl NB. Automating Access to Real-World Evidence. JTO Clin Res Rep. 2022 May 17;3(6):100340. doi: 10.1016/j.jtocrr.2022.100340. PMID: 35719866; PMCID: PMC9201015

Please email tom.sheidow@lhsc.on.ca.ca for any questions